VVV Survey - ESO Phase 3 - Data Release 4.2

Authors: D. Minniti, P. Lucas, and M. Hempel, for the VVV Science Team

Data Collection	VVV
Release Number	4.2
Data Provider	Dante Minniti
Date	05.10 .2020

Abstract

The VVV Survey data delivered to ESO in this "DR4.2" release of the "VVV" Data Collection includes the two-epoch ZYJHKs band-merged tile catalogues that were created by the Wide Field Astronomy Unit (WFAU) at the Royal Observatory, Edinburgh, using singleband catalogues created from the tile images by the Cambridge Astronomical Survey Unit (CASU). These data files were uploaded via the Phase 3 tool to the ESO Archive in July 2020. The data are from ESO programme 179.B-2002, with the VIRCAM instrument, using ZYJHKs filters, with total sky coverage of 540 sq. deg.

Overview of Observations

This Phase 3 release contains observations up to 26 September 2015 with all the approved data from CASU v1.3 pipeline reduction, including images and merged source catalogs. We refer to this release as DR4.2, building on the single band catalogues (known as "source lists" in ESO parlance) and tile images and pawprint images released in DR4.1.

DR4.2 replaces the previous releases of band-merged tile catalogues in DR2 that were derived from the CASU v1.1 or v1.2 pipelines. DR4.2 provides additional data: the bandmerged catalogues now include two separate epochs of contemporaneous JHKs photometry and two separate epochs of contemporaneous ZY photometry. There are also two significant improvements to the data quality compared to the earlier pipelines: (1) the improved photometric calibration procedures implemented in the v1.3 pipeline; (2) more extensive Quality Control (QC) to identify bad data. Despite these improvements, this release is not the final word on absolute photometric calibration on of VVV and some deficiencies are known to exist in the more crowded inner bulge fields. Further improvements have been made, first with the v1.5 pipeline (Gonzalez-Fernandez et al. 2018) and more recently the forthcoming VVV/VICAL procedure (L. Smith et al. in prep.) which fixes the crowded-field issue noted in Hajdu et al.(2020).

The file list for DR4.2 has 348 band-merged catalogues. The list also includes 7 single-band source lists and associated images that were included in order to provide complete provenance data for the band-merged catalogues because they were missing from DR4.1. In total the band-merged catalogues comprise 505 GB of data in uncompressed FITS format..

The VVV photometric dataset is divided into different disk and bulge tiles. The tile nomenclature goes from d001 to d152 in the disk, and from b201 to b396 in the bulge. The coordinates of the tile centers are listed in Tables 1 and 2 below, for the bulge and disk, respectively. These Tables contain the tile ID, Equatorial coordinates RA and DEC (J2000), and Galactic coordinates 1 and b in degrees. The map with the field IDs is shown in Figures 1a and 1b, overlapped on the extinction map of the inner Milky Way from Schlegel et al. 1997.

Figure 1. Maps showing the VVV tile numbers for the bulge (upper panel) and the disk (lower panel).

Release Content

TABLE 1: Bulge tiles coordinates

ID	RA	Dec	Longitude $\left({ }^{\circ}\right)$	Latitude $\left({ }^{\circ}\right)$
b201	18:04:24.0	$-41: 44: 53.52$	350.74816	-9.68974
b202	$18: 08: 00.1$	$-40: 27: 29.88$	352.22619	-9.68971

VVV_DR4.2_description

b203	$18: 11: 29.5$	$-39: 09: 52.92$	353.70409	-9.68973
b204	$18: 14: 53.0$	$-37: 52: 03.36$	355.18207	-9.68974
b205	$18: 18: 11.1$	$-36: 34: 02.64$	356.66012	-9.68976
b206	$18: 21: 24.4$	$-35: 15: 52.20$	358.13813	-9.68975
b207	$18: 24: 33.1$	$-33: 57: 33.48$	359.61607	-9.68977
b208	$18: 27: 37.7$	$-32: 39: 07.20$	1.09399	-9.68974
b209	$18: 30: 38.6$	$-31: 20: 34.08$	2.572	-9.68971
b210	$18: 33: 36.2$	$-30: 01: 55.56$	4.04998	-9.68973
b211	$18: 36: 30.6$	$-28: 43: 12.36$	5.52796	-9.68978
b212	$18: 39: 22.3$	$-27: 24: 25.20$	7.00593	-9.68975
b213	$18: 42: 11.4$	$-26: 05: 34.80$	8.48396	-9.68974
b214	$18: 44: 58.3$	$-24: 46: 42.24$	9.96193	-9.68974
b215	$17: 59: 16.0$	$-41: 13: 55.92$	350.74595	-8.59756
b216	$18: 02: 56.0$	$-39: 57: 07.92$	352.21956	-8.59753
b217	$18: 06: 29.5$	$-38: 40: 04.08$	353.69327	-8.59756
b218	$18: 09: 56.9$	$-37: 22: 46.56$	355.16684	-8.59757
b219	$18: 13: 18.8$	$-36: 05: 16.08$	356.64051	-8.5976
b220	$18: 16: 35.6$	$-34: 47: 34.08$	358.11423	-8.59759
b221	$18: 19: 47.7$	$-33: 29: 42.36$	359.58781	-8.59757
b222	$18: 22: 55.6$	$-32: 11: 41.28$	1.06151	-8.59755
b223	$18: 25: 59.5$	$-30: 53: 32.28$	2.53522	-8.59757
b224	$18: 29: 00.0$	$-29: 35: 16.80$	4.0088	-8.59759
b225	$18: 31: 57.1$	$-28: 16: 54.84$	5.4825	-8.59755
b226	$18: 34: 51.4$	$-26: 58: 27.84$	6.9562	-8.59757
b227	$18: 37: 42.9$	$-25: 39: 56.88$	8.42977	-8.59756
b228	$18: 40: 32.1$	$-24: 21: 21.96$	9.9035	-8.59757
b229	$17: 54: 12.5$	$-40: 42: 07.56$	350.74383	-7.50542
b230	$17: 57: 56.5$	$-39: 25: 54.48$	352.2138	-7.50537
b231	$18: 01: 33.8$	$-38: 09: 24.48$	353.68363	-7.50537
b232	$18: 05: 04.9$	$-36: 52: 38.28$	355.15359	-7.50541
b233	$18: 08: 30.3$	$-35: 35: 38.04$	356.62342	-7.50539
b234	$18: 11: 50.5$	$-34: 18: 24.48$	358.09337	-7.50535
b235	$18: 15: 05.8$	$-33: 00: 59.76$	359.56322	-7.50542
b236	$18: 18: 16.8$	$-31: 43: 24.24$	1.03312	-7.50538
b237	$18: 21: 23.6$	$-30: 25: 39.36$	2.50307	-7.50541
b238	$18: 24: 26.8$	$-29: 07: 46.20$	3.973	-7.5054
b239	$18: 27: 26.6$	$-27: 49: 45.84$	5.44287	-7.50536
b240	$18: 30: 23.3$	$-26: 31: 39.36$	6.91271	-7.5054
b241	$18: 33: 17.1$	$-25: 13: 27.12$	8.38261	-7.50541
b242	$18: 36: 08.5$	$-23: 55: 10.20$	9.85251	-7.50542
b243	$17: 49: 13.8$	$-40: 09: 29.16$	350.74206	-6.41324
b244	$17: 53: 01.6$	$-38: 53: 51.72$	352.20875	-6.41323
b245	$17: 56: 42.5$	$-37: 37: 54.84$	353.67546	-6.41323
	18			

VVV_DR4.2_description
Page 3 of 21

b246	$18: 00: 17.1$	$-36: 21: 40.32$	355.14219	-6.41321
b247	$18: 03: 45.8$	$-35: 05: 09.96$	356.60888	-6.41323
b248	$18: 07: 09.1$	$-33: 48: 25.20$	358.0755	-6.41322
b249	$18: 10: 27.5$	$-32: 31: 27.12$	359.54218	-6.41323
b250	$18: 13: 41.3$	$-31: 14: 17.16$	1.00886	-6.41325
b251	$18: 16: 51.0$	$-29: 56: 56.04$	2.47562	-6.41319
b252	$18: 19: 56.7$	$-28: 39: 25.92$	3.94224	-6.41326
b253	$18: 22: 59.0$	$-27: 21: 46.80$	5.40892	-6.41319
b254	$18: 25: 58.0$	$-26: 04: 00.12$	6.87563	-6.41325
b255	$18: 28: 54.1$	$-24: 46: 06.60$	8.34231	-6.41319
b256	$18: 31: 47.5$	$-23: 28: 07.32$	9.80903	-6.41325
b257	$17: 44: 20.1$	$-39: 36: 02.16$	350.74076	-5.32104
b258	$17: 48: 11.3$	$-38: 20: 59.64$	352.20485	-5.32102
b259	$17: 51: 55.6$	$-37: 05: 36.24$	353.66885	-5.32101
b260	$17: 55: 33.4$	$-35: 49: 53.40$	355.13291	-5.32104
b261	$17: 59: 05.2$	$-34: 33: 52.92$	356.59692	-5.32103
b262	$18: 02: 31.5$	$-33: 17: 36.24$	358.06096	-5.32105
b263	$18: 05: 52.8$	$-32: 01: 04.80$	359.525	-5.32104
b264	$18: 09: 09.3$	$-30: 44: 20.04$	0.98899	-5.32099
b265	$18: 12: 21.5$	$-29: 27: 23.40$	2.45295	-5.32106
b266	$18: 15: 29.8$	$-28: 10: 15.24$	3.91703	-5.32105
b267	$18: 18: 34.4$	$-26: 52: 57.36$	5.38103	-5.32101
b268	$18: 21: 35.6$	$-25: 35: 30.48$	6.84507	-5.32101
b269	$18: 24: 33.8$	$-24: 17: 55.68$	8.30909	-5.321
b270	$18: 27: 29.2$	$-23: 00: 14.04$	9.77309	-5.32107
b271	$17: 39: 31.1$	$-39: 01: 49.44$	350.73953	-4.22883
b272	$17: 43: 25.5$	$-37: 47: 22.20$	352.20141	-4.22884
b273	$17: 47: 12.9$	$-36: 32: 31.92$	353.66332	-4.22886
b274	$17: 50: 53.7$	$-35: 17: 20.76$	355.12516	-4.2289
b275	$17: 54: 28.4$	$-34: 01: 49.80$	356.58709	-4.22886
b276	$17: 57: 57.5$	$-32: 46: 01.20$	358.04898	-4.22882
b277	$18: 01: 21.5$	$-31: 29: 56.40$	359.51088	-4.22881
b278	$18: 04: 40.6$	$-30: 13: 36.84$	0.97275	-4.22884
b279	$18: 07: 55.3$	$-28: 57: 03.60$	2.43463	-4.22884
b280	$18: 11: 05.9$	$-27: 40: 17.76$	3.89659	-4.22886
b281	$18: 14: 12.7$	$-26: 23: 20.76$	5.35849	-4.22883
b282	$18: 17: 16.1$	$-25: 06: 13.68$	6.82039	-4.22886
b283	$18: 20: 16.2$	$-23: 48: 57.60$	8.28222	-4.22888
b284	$18: 23: 13.5$	$-22: 31: 32.88$	9.74416	-4.22889
b285	$17: 34: 46.9$	$-38: 26: 51.72$	350.73871	-3.13666
b286	$17: 38: 44.3$	$-37: 12: 59.40$	352.19896	-3.1367
b287	$17: 42: 34.5$	$-35: 58: 41.88$	353.65931	-3.1367
b288	$17: 46: 18.1$	$-34: 44: 01.68$	355.11962	-3.13673
	18			

VVV_DR4.2_description

b289	17:49:55.5	-33:29:00.24	356.57994	-3.13668
b290	17:53:27.3	-32:13:39.72	358.04023	-3.13673
b291	17:56:53.7	-30:58:01.20	359.50054	-3.13672
b292	18:00:15.3	-29:42:06.12	0.96088	-3.13663
b293	18:03:32.3	-28:25:56.28	2.4212	-3.13666
b294	18:06:45.1	-27:09:32.76	3.8815	-3.13671
b295	18:09:54.0	-25:52:56.64	5.34179	-3.13672
b296	18:12:59.4	-24:36:09.00	6.80204	-3.13666
b297	18:16:01.4	-23:19:10.92	8.26235	-3.13668
b298	18:19:00.5	-22:02:03.12	9.72271	-3.13666
b299	17:30:07.3	-37:51:11.88	350.73789	-2.04453
b300	17:34:07.3	-36:37:53.76	352.19711	-2.04451
b301	17:38:00.2	-35:24:09.00	353.65635	-2.04453
b302	17:41:46.4	-34:09:59.40	355.11565	-2.04449
b303	17:45:26.4	-32:55:27.48	356.57487	-2.04453
b304	17:49:00.6	-31:40:34.32	358.03411	-2.04446
b305	17:52:29.4	-30:25:22.08	359.49334	-2.04452
b306	17:55:53.3	-29:09:51.84	0.95261	-2.04456
b307	17:59:12.4	-27:54:05.04	2.41186	-2.04451
b308	18:02:27.3	-26:38:03.12	3.87111	-2.04447
b309	18:05:38.2	-25:21:47.52	5.33034	-2.04451
b310	18:08:45.5	-24:05:18.96	6.78962	-2.04454
b311	18:11:49.3	-22:48:38.52	8.24891	-2.04449
b312	18:14:50.0	-21:31:47.64	9.70816	-2.04447
b313	17:25:32.2	-37:14:49.92	350.73753	-0.95236
b314	17:29:34.8	-36:02:05.64	352.19625	-0.9523
b315	17:33:30.2	-34:48:52.92	353.65504	-0.95232
b316	17:37:18.8	-33:35:14.28	355.11368	-0.95231
b317	17:41:01.1	-32:21:10.80	356.57248	-0.95229
b318	17:44:37.6	-31:06:45.00	358.03121	-0.9523
b319	17:48:08.6	-29:51:58.32	359.48996	-0.95233
b320	17:51:34.6	-28:36:52.56	0.94861	-0.95235
b321	17:54:55.8	-27:21:28.44	2.40742	-0.95234
b322	17:58:12.6	-26:05:48.12	3.86612	-0.95234
b323	18:01:25.4	-24:49:52.68	5.32477	-0.95232
b324	18:04:34.4	-23:33:42.84	6.78355	-0.95232
b325	18:07:40.0	-22:17:20.40	8.24226	-0.95238
b326	18:10:42.3	-21:00:45.72	9.70101	-0.95231
b327	17:21:01.7	-36:37:48.00	350.73744	0.13984
b328	17:25:06.5	-35:25:37.20	352.19621	0.13989
b329	17:29:04.2	-34:12:56.52	353.65492	0.13987
b330	17:32:55.0	-32:59:47.76	355.11368	0.13984
b331	17:36:39.5	-31:46:13.08	356.57236	0.13988

VVV_DR4.2_description
Page 5 of 21
b332
b333
b334
b335
b336
b337
b338
b339
b340
b341
b342
b343
b344
b345
b346
b347
b348
b349
b350
b351
b352
b353
b354
b355
b356
b357
b358
b359
b360
b361
b362
b363
b364
b365
b366
b367
b368
b369
b370
b371
b372
b373
b374

17:40:18.1 -30:32:14.28 17:43:51.2 -29:17:52.80 17:47:19.1 -28:03:10.80 17:50:42.3 -26:48:09.36 17:54:01.0 $-25: 32: 49.92$ 17:57:15.5 -24:17:14.28 18:00:26.2 $-23: 01: 23.16$ 18:03:33.3 -21:45:17.64 18:06:37.2 -20:28:59.16 17:16:35.5 $-36: 00: 07.56$ 17:20:42.4 $-34: 48: 30.24$
17:24:42.1 $-33: 36: 20.88$
17:28:35.0 $-32: 23: 41.64$
17:32:21.6 $-31: 10: 35.04$
17:36:02.2 -29:57:02.52
17:39:37.2 $-28: 43: 06.24$
17:43:07.0 $-27: 28: 47.64$
17:46:31.9 -26:14:08.52
17:49:52.3 -24:59:09.96
17:53:08.5 -23:43:53.40
17:56:20.8 -22:28:20.28
17:59:29.4 $-21: 12: 31.68$
18:02:34.6 -19:56:29.04
17:12:13.6 $-35: 21: 49.68$
17:16:22.5 $-34: 10: 45.12$
17:20:24.1 -32:59:06.36
17:24:18.9 -31:46:56.64
17:28:07.3 -30:34:17.40
17:31:49.7 $-29: 21: 11.16$
17:35:26.5 -28:07:39.36
17:38:58.0 -26:53:43.80
17:42:24.6 -25:39:25.92
17:45:46.6 -24:24:47.88
17:49:04.4 -23:09:50.40
17:52:18.1 -21:54:34.92
17:55:28.1 -20:39:02.88
17:58:34.7 -19:23:15.00
17:07:55.9 -34:42:57.24
17:12:06.5 $-33: 32: 24.36$
17:16:09.9 -32:21:16.20
17:20:06.4 $-31: 09: 35.28$
17:23:56.5 $-29: 57: 23.04$
17:27:40.6 -28:44:42.36

358.0311	0.13982
359.48985	0.13988
0.94855	0.13988
2.40731	0.13985
3.8661	0.13985
5.32478	0.13981
6.78348	0.13983
8.24226	0.13983
9.70099	0.13985
350.73765	1.23203
352.19686	1.23205
353.65613	1.23203
355.11542	1.23207
356.57468	1.23205
358.03399	1.23203
359.49322	1.23206
0.95251	1.23203
2.41172	1.23201
3.87096	1.23204
5.33027	1.23202
6.78955	1.23201
8.24885	1.23202
9.70808	1.23199
350.73827	2.32427
352.19857	2.32417
353.65894	2.32423
355.11924	2.32422
356.57962	2.3242
358.03989	2.32423
359.50024	2.32421
0.96059	2.32418
2.42098	2.3242
3.88124	2.32419
5.34158	2.32416
6.80192	2.32418
8.26224	2.32419
9.72265	2.32423
350.73892	3.41637
352.20083	3.41644
353.6628	3.41638
355.12466	3.41637
356.58663	3.41642
358.04853	3.4164

VVV_DR4.2_description
Page 6 of 21

b375	$17: 31: 19.0$	$-27: 31: 34.68$	359.51046	3.41635
b376	$17: 34: 52.2$	$-26: 18: 01.44$	0.97243	3.41644
b377	$17: 38: 20.3$	$-25: 04: 05.16$	2.43434	3.41638
b378	$17: 41: 43.8$	$-23: 49: 46.56$	3.89631	3.41638
b379	$17: 45: 03.0$	$-22: 35: 07.44$	5.35828	3.41637
b380	$17: 48: 18.1$	$-21: 20: 09.24$	6.8202	3.4164
b381	$17: 51: 29.4$	$-20: 04: 53.40$	8.28204	3.4164
b382	$17: 54: 37.2$	$-18: 49: 20.64$	9.74399	3.41636
b383	$17: 03: 42.2$	$-34: 03: 30.60$	350.73979	4.50856
b384	$17: 07: 54.4$	$-32: 53: 29.40$	352.2038	4.50857
b385	$17: 11: 59.4$	$-31: 42: 51.12$	353.66783	4.50858
b386	$17: 15: 57.5$	$-30: 31: 37.92$	355.13195	4.5086
b387	$17: 19: 49.2$	$-29: 19: 52.68$	356.59597	4.50856
b388	$17: 23: 34.8$	$-28: 07: 36.84$	358.06004	4.50857
b389	$17: 27: 14.8$	$-26: 54: 52.56$	359.52411	4.50859
b390	$17: 30: 45.4$	$-25: 43: 05.52$	0.96034	4.50854
b391	$17: 34: 15.1$	$-24: 29: 30.12$	2.42444	4.50852
b392	$17: 37: 40.1$	$-23: 15: 31.32$	3.8885	4.50858
b393	$17: 41: 00.7$	$-22: 01: 10.92$	5.35253	4.50853
b394	$17: 44: 17.1$	$-20: 46: 29.64$	6.81666	4.50854
b395	$17: 47: 29.7$	$-19: 31: 29.28$	8.28074	4.50857
b396	$17: 50: 38.7$	$-18: 16: 11.28$	9.74476	4.50855

TABLE 2: Disk tile coordinates

ID	RA	Dec	Longitude $\left({ }^{\circ}\right)$	Latitude $\left({ }^{\circ}\right)$
d001	$11: 43: 24.9$	$-63: 31: 38.64$	295.4377	-1.64975
d002	11:56:12.6	$-63: 52: 21.00$	296.89672	-1.64979
d003	$12: 09: 17.2$	$-64: 08: 46.68$	298.35572	-1.64971
d004	$12: 22: 35.2$	$-64: 20: 48.12$	299.8147	-1.64971
d005	$12: 36: 02.6$	$-64: 28: 18.84$	301.27373	-1.64973
d006	$12: 49: 35.2$	$-64: 31: 14.88$	302.73271	-1.64977
d007	$13: 03: 08.4$	$-64: 29: 34.44$	304.1917	-1.64978
d008	$13: 16: 37.6$	$-64: 23: 18.24$	305.65072	-1.6497
d009	$13: 29: 58.6$	$-64: 12: 30.24$	307.10972	-1.64971
d010	$13: 43: 07.3$	$-63: 57: 15.84$	308.56873	-1.64973
d011	$13: 55: 59.9$	$-63: 37: 42.60$	310.02772	-1.64971
d012	$14: 08: 33.2$	$-63: 14: 00.24$	311.48673	-1.6497
d013	$14: 20: 44.8$	$-62: 46: 19.92$	312.94573	-1.64979
d014	$14: 32: 32.5$	$-62: 14: 52.80$	314.40472	-1.64974
d015	$14: 43: 42.1$	$-61: 40: 33.96$	315.83598	-1.64972
d016	$14: 54: 38.8$	$-61: 02: 16.44$	317.29497	-1.64975

VVV_DR4.2_description
d017
d018
d019
d020
d021
d022
d023
d024
d025
d026
d027
d028
d029
d030
d031
d032
d033
d034
d035
d036
d037
d038
d039
d040
d041
d042
d043
d044
d045
d046
d047
d048
d049
d050
d051
d052
d053
d054
d055
d056
d057
d058
d059

15:05:08.7 -60:20:51.00 15:15:11.9 -59:36:30.60 15:24:48.6 -58:49:27.84 15:33:59.4 -57:59:54.60 15:42:45.1 -57:08:02.40 15:51:06.6 -56:14:02.40 15:59:04.9 -55:18:04.32 16:06:41.2 -54:20:17.88 16:13:56.6 -53:20:51.36 16:20:52.3 -52:19:53.40 16:27:29.4 -51:17:30.84 16:33:49.0 -50:13:50.52 16:39:52.2 -49:08:58.92 16:45:40.1 -48:03:01.80 16:51:13.6 -46:56:04.20 16:56:33.7 -45:48:11.16 17:01:41.3 -44:39:26.64 17:06:37.1 -43:29:54.96 17:11:22.0 -42:19:39.72
17:15:56.8 -41:08:44.16 17:20:22.0 -39:57:11.16 17:24:38.4 -38:45:04.32 11:45:52.5 $-62: 28: 17.40$ 11:58:14.2 -62:48:15.12 12:10:50.9 -63:04:04.80 12:23:39.7 -63:15:39.60 12:36:36.7 -63:22:53.40 12:49:38.4 -63:25:42.96 13:02:40.6 -63:24:06.84 13:15:39.3 -63:18:05.40 13:28:30.7 -63:07:42.24 13:41:11.1 -62:53:02.04 13:53:37.2 -62:34:12.00 14:05:46.2 -62:11:20.04 14:17:35.5 -61:44:36.60 14:29:03.3 -61:14:12.48 14:40:08.1 $-60: 40: 18.48$
15:10:57.1 $-58: 39: 41.40$ 15:20:24.3 -57:53:49.92 15:29:27.3 -57:05:28.32
15:38:06.7 -56:14:47.40

318.75395	-1.64975
320.21293	-1.64975
321.67194	-1.64978
323.13095	-1.64976
324.58996	-1.64971
326.04898	-1.64975
327.50799	-1.64974
328.96694	-1.64974
330.42599	-1.64974
331.88495	-1.64978
333.34393	-1.64976
334.80299	-1.64976
336.26199	-1.64971
337.72099	-1.64973
339.17999	-1.64971
340.63896	-1.64975
342.09795	-1.64972
343.55695	-1.64975
345.01595	-1.64979
346.47495	-1.64979
347.934	-1.64973
349.39294	-1.64975
295.43747	-0.55759
296.89617	-0.55758
298.35479	-0.55753
299.8135	-0.55756
301.27213	-0.55754
302.73081	-0.55755
304.18948	-0.5576
305.64814	-0.55754
307.10682	-0.55756
308.56549	-0.55756
310.02413	-0.5576
311.48283	-0.55756
312.94152	-0.55757
314.40014	-0.55761
315.85883	-0.55752
317.3175	-0.55758
318.77616	-0.55761
320.23482	-0.55759
321.69349	-0.55755
323.15217	-0.55754
324.61087	-0.55755

VVV_DR4.2_description
Page 8 of 21
d060
d061
d062
d063
d064
d065
d066
d067
d068
d069
d070
d071
d072
d073
d074
d075
d076
d077
d078
d079
d080
d081
d082
d083
d084
d085
d086
d087
d088
d089
d090
d091
d092
d093
d094
d095
d096
d097
d098
d099
d100
d101
d102

15:46:23.4 -55:21:57.60 15:54:18.1 -54:27:08.64 16:01:51.8 -53:30:29.16
16:09:05.6 -52:32:08.16 16:16:00.5 -51:32:13.20 16:22:37.4 -50:30:51.84 16:28:57.4 -49:28:10.56 16:35:01.4 -48:24:15.84 16:40:50.5 -47:19:13.08 16:46:25.6 -46:13:07.32 16:51:47.4 -45:06:03.96 16:56:56.9 -43:58:06.96 17:01:54.9 -42:49:20.28 17:06:42.0 -41:39:48.24 17:11:19.0 -40:29:33.72 17:15:46.6 -39:18:39.96 17:20:05.3 -38:07:09.84
11:48:10.1 $-61: 24: 47.16$ 12:00:07.6 -61:44:03.84 12:12:18.6 -61:59:20.40 12:24:40.4 -62:10:30.00 12:37:09.6 -62:17:27.96 12:49:42.8 -62:20:11.40 13:02:16.6 -62:18:38.16 13:14:47.2 -62:12:50.04 13:27:11.3 -62:02:48.84 13:39:25.6 -61:48:39.24 13:51:27.1 -61:30:28.08 14:03:13.2 -61:08:22.20 14:14:41.5 -60:42:30.60 14:25:50.4 -60:13:03.72 14:36:38.4 -59:40:11.64 14:47:04.4 -59:04:05.52 14:57:07.9 -58:24:56.16 15:06:48.6 -57:42:55.44 15:16:06.6 -56:58:13.80 15:25:01.9 -56:11:02.04 15:33:35.2 -55:21:30.60 15:41:47.0 -54:29:49.20 15:49:38.0 -53:36:07.56 15:57:09.0 -52:40:34.32 16:04:21.0 -51:43:17.40 16:11:14.7 -50:44:24.72

326.0695	-0.55754
327.52817	-0.55761
328.98684	-0.55756
330.44549	-0.55755
331.90419	-0.55754
333.36286	-0.55756
334.82153	-0.55755
336.28015	-0.55756
337.73882	-0.55761
339.19753	-0.55758
340.65613	-0.55757
342.11483	-0.55761
343.57351	-0.55754
345.03215	-0.55756
346.49083	-0.55759
347.94953	-0.55759
349.40822	-0.55752
295.43749	0.53461
296.89636	0.53458
298.35521	0.53456
299.81408	0.53461
301.27295	0.53465
302.73182	0.53458
304.19066	0.53466
305.64955	0.53458
307.10837	0.5346
308.56725	0.53465
310.02613	0.53456
311.48497	0.53458
312.94386	0.53465
314.40272	0.53463
315.86159	0.53462
317.32043	0.53461
318.77932	0.53465
320.23818	0.53459
321.697	0.53459
323.15588	0.53461
324.61479	0.53459
326.07365	0.53465
327.5325	0.53463
328.99135	0.53458
330.45023	0.53459
331.90911	0.5346

VVV_DR4.2_description

d103	$16: 17: 51.2$	$-49: 44: 03.48$	333.36798	0.5346
d104	$16: 24: 11.3$	$-48: 42: 20.16$	334.82687	0.53461
d105	$16: 30: 16.0$	$-47: 39: 21.24$	336.28568	0.5346
d106	$16: 36: 06.0$	$-46: 35: 12.12$	337.7445	0.5346
d107	$16: 41: 42.3$	$-45: 29: 57.84$	339.20338	0.5346
d108	$16: 47: 05.7$	$-44: 23: 43.44$	340.66229	0.53457
d109	$16: 52: 16.9$	$-43: 16: 33.24$	342.12118	0.53461
d110	$16: 57: 16.8$	$-42: 08: 31.56$	343.58005	0.53462
d111	$17: 02: 05.9$	$-40: 59: 42.36$	345.03883	0.53459
d112	$17: 06: 45.0$	$-39: 50: 08.52$	346.49771	0.53457
d113	$17: 11: 14.7$	$-38: 39: 53.28$	347.95664	0.53461
d114	$17: 15: 35.6$	$-37: 29: 00.24$	349.41546	0.5346
d115	$11: 50: 18.7$	$-60: 21: 09.00$	295.43768	1.6268
d116	$12: 01: 53.8$	$-60: 39: 47.52$	296.89732	1.62677
d117	$12: 13: 41.0$	$-60: 54: 32.76$	298.35689	1.62684
d118	$12: 25: 37.8$	$-61: 05: 19.68$	299.81648	1.62674
d119	$12: 37: 41.3$	$-61: 12: 02.52$	301.27608	1.62684
d120	$12: 49: 48.4$	$-61: 14: 39.48$	302.73567	1.62683
d121	$13: 01: 55.9$	$-61: 13: 09.12$	304.19526	1.6268
d122	$13: 14: 00.7$	$-61: 07: 32.16$	305.65484	1.62675
d123	$13: 25: 59.6$	$-60: 57: 50.40$	307.11447	1.62681
d124	$13: 37: 49.7$	$-60: 44: 08.88$	308.57402	1.62675
d125	$13: 49: 28.2$	$-60: 26: 32.28$	310.03361	1.6268
d126	$14: 00: 52.9$	$-60: 05: 08.16$	311.49324	1.62678
d127	$14: 12: 01.4$	$-59: 40: 04.44$	312.9528	1.62677
d128	$14: 22: 52.3$	$-59: 11: 29.76$	314.4124	1.62684
d129	$14: 33: 24.0$	$-58: 39: 34.56$	315.87197	1.62678
d130	$14: 43: 35.7$	$-58: 04: 28.20$	317.33156	1.62679
d131	$14: 53: 26.6$	$-57: 26: 21.48$	318.79117	1.62676
d132	$15: 02: 56.4$	$-56: 45: 24.48$	320.25077	1.62679
d133	$15: 12: 05.0$	$-56: 01: 48.00$	321.71037	1.62674
d134	$15: 20: 52.6$	$-55: 15: 41.76$	323.16993	1.62676
d135	$15: 29: 19.3$	$-54: 27: 15.48$	324.62955	1.62682
d136	$15: 37: 25.9$	$-53: 36: 39.24$	326.08912	1.62676
d137	$15: 45: 12.7$	$-52: 44: 01.32$	327.54872	1.62676
d138	$15: 52: 40.6$	$-51: 49: 30.36$	329.00835	1.62678
d139	$15: 59: 50.2$	$-50: 53: 14.64$	330.4679	1.6268
d140	$16: 06: 42.4$	$-49: 55: 21.36$	331.92752	1.62681
d141	$16: 13: 17.9$	$-48: 55: 57.72$	333.38714	1.62678
d142	$16: 19: 37.6$	$-47: 55: 10.20$	334.8467	1.62678
d143	$16: 25: 42.3$	$-46: 53: 04.92$	336.30624	1.62678
d144	$16: 31: 32.8$	$-45: 49: 46.92$	337.7659	1.62684
d145	$16: 37: 09.9$	$-44: 45: 22.32$	339.22547	1.62682
	163			

VVV_DR4.2_description

Page 10 of 21

d146	$16: 42: 34.4$	$-43: 39: 55.44$	340.68506	1.62681
d147	$16: 47: 46.9$	$-42: 33: 30.96$	342.14462	1.62677
d148	$16: 52: 48.2$	$-41: 26: 12.48$	343.60424	1.62683
d149	$16: 57: 39.0$	$-40: 18: 04.32$	345.06387	1.6268
d150	$17: 02: 19.8$	$-39: 09: 10.08$	346.52343	1.62677
d151	$17: 06: 51.3$	$-37: 59: 32.64$	347.98303	1.62675
d152	$17: 11: 14.1$	$-36: 49: 15.24$	349.4426	1.62674

VVV observations took place from 2010-2015. They comprised multi-epoch Ks observing blocks (OBs) and two epochs of contemporaneous multi-filter OBs, with JHKs OBs and ZY OBs taken separately in order to comply with ESO policies on maximum OB duration. All planned VVV observations from 2010-2015 have now been completed but the new VVVX extension to the VVV survey is continuing and it includes sparsely sampled data at the original VVV tile positions.

The files for this VVV Survey DR4.2 include only data that have passed the Quality Control (QC) procedures designed to remove individual bad observations.

Release Notes

Data Reduction and Calibration

All DR4 data are based on the CASU version v1.3 pipeline, which produces publication quality results provided that appropriate checks are made. The main changes to the pipeline since version 1.1 are as follows.
(i) The magnitude zero point error estimate for tiles is now calculated from the zeropoint variation in the component pawprint images;
(ii) All tile catalogues have been re-grouted taking into account both detector level magnitude zero points variations and atmospheric seeing variations. ("Grouting" refers to the process of constructing calibrated tile images and catalogues from the 6 overlapping VIRCAM pawprint images).
(iii) A bug involving how the aperture 2 correction was calculated is now fixed and tile catalogues have now been re-grouted to include this. The change in the associated apermag2 results (source magnitudes in aperture 2) is typically at the level of $\sim 0.05 \mathrm{mag}$.
(iv) Prior to re-grouting all the stacked pawprint photometric zero-points were recomputed using the latest version of the photometry software.
(v) Post re-grouting all the tile photometric zero-points have also been updated.

Full details of the pipeline procedure and the version changes can be found at:
http://apm49.ast.cam.ac.uk/surveys-projects/vista/data-processing/

VVV_DR4.2_description
Page 11 of 21

The photometric and astrometric calibrations are both derived from the 2MASS Point Source Catalogue. The photometric calibration includes an additional colour term designed to correct for the effect of interstellar extinction on the 2MASS to VISTA photometric transformations. This works well in the J, H and Ks bandpasses and improvements in the pipeline between v1.1 and v1.3 have fixed the calibration of a small number of tiles that previously appeared to have problems at the 0.1 mag level (by comparison with 2MASS and by using the tile overlap regions). Remaining fields with slightly poorer than average photometric calibration in J, H or Ks are solely due to poor and changing weather conditions, which will be apparent from the pawprint and tile zero points and the seeing given in the FITS catalogue headers.

The only changes to individual DR4 FITS images are in the headers. The zero points will in general be slightly different than in the previously releases owing to slight improvements in the calibration procedure as noted above. Also, the ESO Grades describing data quality for each OB have in some cases been updated. A very small change to the astrometric WCS coefficients was also implemented, affecting only data taken after 20101201. The effect on the astrometry is much less than 1 arcsecond. The PV2_3 and PV2_5 FITS header keywords for subsequent data changed from 42.0, -10000.0 to $44.0,-10300.0$.

The tile catalogues have slightly changed photometry compared to previous releases, owing to the updated zero points and the new aperture corrections for aperture 2 . Most users will wish to use aperture 1 , aperture 2 or aperture 3 magnitudes, which correspond to aperture diameters of $1.0, \sqrt{ } 2$ and 2.0 arcsec respectively. The trade off is between a smaller and more accurate aperture correction for larger apertures vs. increased effects of overlapping apertures on the photometry in crowded fields. The CASU aperture photometry does attempt to deblend the fluxes of adjacent sources with overlapping apertures but the results are not as good as profile fitting photometry (which is much more computationally intensive). We plan to supply profile fitting photometry products in the near future.

The team has worked on the quality control using the v1.3 data, as detailed below.
The limiting magnitudes are similar to the ones for DR1 since we cover the same fields. Maps of limiting magnitudes are given in Saito et al. (2012). In addition, the calibration of the VVV Survey photometry was investigated as function of crowding in the bulge and disk fields, using the overlap regions between adjacent tiles and adjacent pawprint.

The VVV saturation limit ranges between $\mathrm{Ks}=10-12 \mathrm{mag}$, with multi-filter disk observations featuring a fainter saturation limit due to the slightly longer exposure time, e.g. DIT $_{\mathrm{Ks}}=10 \mathrm{~s}$ in multicolor observations, as compared for $\mathrm{DIT}_{\mathrm{Ks}}=4 \mathrm{~s}$ in the variability study. $\mathrm{DIT}=4 \mathrm{~s}$ was used for all Ks observations in the bulge. The saturation limit also varies between the 16 VIRCAM detectors. For brighter magnitudes the 2MASS photometry should be preferred. The photometric limit is typically $\mathrm{Ks}=17.5 \mathrm{mag}$, but in high density fields like the in the Galactic center region it can be $\mathrm{Ks}<16 \mathrm{mag}$ (see photometric completeness in Saito et al.2012).

The photometric catalogues contain calibrated aperture photometry, and the limiting magnitudes correspond to the aperture photometry. For some specific scientific purposes it is better to obtain profile fitting (PSF) photometry and we plan to supply band-merged PSF photometry products in the near future.

Data Quality

The same words of caution as before apply as in previous releases: even though we checked the images for defects, we are still identifying images that need to be reprocessed or reacquired.

The Quality Control for the Phase 3 data from v 1.3 was performed with involvement of ESO and of most of the scientists from the VVV Survey Science Team. We checked image defects, telescope problems, seeing, zero points, magnitude limits, ellipticities, airmass, etc.
Algorithmic quality control cuts to remove images with low zero points (after correcting for the seasonal trend), seeing that was significantly outside specification, or high average ellipticity were also applied.

Some additional quality control procedures were implemented for DR4 that identified a small number of tiles or pawprints where telescope guiding had been lost and fields with blurred or distorted image profiles. In addition we also identified some bad tiles where there was a large variation in the seeing or in the zero points between the 6 constituent pawprints, even though the values for the tile had passed the quality threshold. Furthermore, since we now have full confidence in the photometric calibration of the J, H and Ks data we decided to release some tile images and catalogues that had been removed from previous releases. In some cases this was because the improved calibration meant that the image now pass the seasonally adjusted threshold for the zero points. In other cases, some Ks images have variations in the background level that cause a poor cosmetic appearance without significantly affecting the time series photometry, which we consider to be the most important VVV science product. A good cosmetic appearance was required for all of the ZYJHKs master images from 2010-11 and 2015 in order to be part of this release.

There are a number of well known image defects intrinsic to VISTA, many of which are illustrated with pictures in the CASU web page located at:
casu.ast.cam.ac.uk/surveys-projects/vista/technical/known-issues

Known Issues

1) The Z and Y calibration is fairly good for fields located $>2^{\circ}$ off the Galactic equator but at present it remains unreliable for fields at latitudes $|\mathbf{b}|<2^{\circ}$. It had been hoped that ESO observations of standard fields in all filters in the $1^{\text {st }}$ year of observation would provide data to calibrate the VVV Z and Y data but in the event there was insufficient data at similar times and airmasses to VVV.
2) The 2MASS-based calibration in all filters is less reliable in the most crowded inner bulge fields, approximately at Galactic coordinates $-6^{\circ}<l<6^{\circ},-3^{\circ}<b<2.5^{\circ}$, see Hajdu et al.(2020). An improved "VICAL" calibration procedure (L. Smith et al., in prep.) has recently been implemented for VVV PSF photometry products that effectively uses field overlaps to provide a more uniform calibration that is anchored to uncrowded fields with low extinction in the lower bulge. We plan to supply these products to ESO in the near future. For the most part they will supersede this DR4.2 release, except for stars at or above the saturation limit.

Data Format

File Types

There are 6 types of file, all in FITS format. The main product is the 348 tile catalogues (filenames ending in ".fits"). There is also a meta-file containing the column description information reproduced below.

The other file types are 14 compressed ".fits.fz" image files (6 multi-extension VIRCAM pawprint images, 1 tile mage and the 7 associated weight maps) and 7 single-band source lists ".fits" files. These 14 images are provided because they were missing from DR4.1, which contains the rest of the images and single-band source lists that were used to create the DR4.2 two-epoch multi-filter catalogues.

Catalogue Columns

In the table below, the FITS format types are: A - ASCII string, I - signed 2 bit integer, J - signed 4 bit integer, K - signed 8 bit integer, D - double precision (64 bit) floating point variable, E - single precision (32 bit) floating point variable, B - unsigned byte.

All magnitudes are on the Vega system.

Column Name IAUNAME sourceID	Format $29 A$	Description IAU Name (not unique)
K	Unique ID of this merged detection as assigned by merge algorithm Unique ID of the VISTA Science Archive curation event giving rise to this record Unique ID of the set of frames that this merged source comes from. These sets comprise multi-filter observations of the same field.	
frameSetID	K	Celestial Right Ascension
ra2000	D	Celestial Declination
dec2000	D	Galactic longitude
l	D	Galactic latitude
b	D	SDSS system spherical co-ordinate 1
lambda	D	SDSS system spherical co-ordinate 2
eta	Seam code for a unique (=0) or duplicated (!=0) source (eg. flags	
priOrSec	K	overlap duplicates).
h_1mks_1Pnt	E	Point source colour H_1-Ks_1 (using aperMag3)
h_1mks_1PntErr	E	Error on point source colour H_1-Ks_1
h_2mks_2Pnt	E	Point source colour H_2-Ks_2 (using aperMag3)
h_2mks_2PntErr	E	Error on point source colour H_2-Ks_2
j_1mh_1Pnt	E	Point source colour J_1-H_1 (using aperMag3)
j_1mh_1PntErr	E	Error on point source colour J_1-H_1
j_2mh_2Pnt	E	Point source colour J_2-H_2 (using aperMag3)
j_2mh_2PntErr	E	Error on point source colour J_2-H_2

VVV_DR4.2_description
Page 14 of 21

z_1my_1Pnt	E	Point source colour Z_1-Y_1 (using aperMag3)				
z_1my_1PntErr	E	Error on point source colour Z_1-Y_1				
z_2my_2Pnt	E	Point source colour Z_2-Y_2 (using aperMag3)				
z_2my_2PntErr	E	Error on point source colour Z_2-Y_2				
mergedClassStat	E	Merged N(0				
		Class flag from available measurements (1\|0	-1	-2	-3	-
mergedClass	1	9=galaxy\|noise	stellar	probableStar	probableGalaxy	saturated)
pStar	E	Probability that the source is a star				
pGalaxy	E	Probability that the source is a galaxy				
pNoise	E	Probability that the source is noise				
pSaturated	E	Probability that the source is saturated				
z_1Mjd	D	Modified Julian Day in Z_1 band				
z_1AperMag1	E	Point source Z_1 aperture corrected mag (1.0 arcsec aperture diameter)				
z_1AperMag1Err	E	Error in point source Z_1 mag (1.0 arcsec aperture diameter)				
z_1AperMag3	E	Default point source Z_1 aperture corrected mag (2.0 arcsec aperture diameter)				
z_1AperMag3Err	E	Error in default point source Z_1 mag (2.0 arcsec aperture diameter)				
z_1AperMag4	E	Point source Z_1 aperture corrected mag (2.8 arcsec aperture diameter)				
z_1AperMag4Err	E	Error in point source Z_1 mag (2.8 arcsec aperture diameter)				
z_1Gausig	E	RMS of axes of ellipse fit in Z_1				
z_1Ell	E	1-b/a				
z_1PA	E	ellipse fit celestial orientation in Z_1				
z_1ErrBits	J	processing warning/error bitwise flags in Z_1				
z_1AverageConf	E	average confidence in 2 arcsec diameter default aperture (aper3) Z_1				
z_1Class	1	discrete image classification flag in Z_1				
z_1ClassStat	E	S-Extractor classification statistic in Z_1				
z_1ppErrBits	J	additional WFAU post-processing error bits in Z_1				
z_1SeqNum	J	the running number of the Z _1 detection				
z_1Xi	E	Offset of Z_1 detection from master position (+east/-west)				
z_1Eta	E	Offset of Z_1 detection from master position (+north/-south)				
z_2Mjd	D	Modified Julian Day in Z_2 band				
z_2AperMag1	E	Point source Z_2 aperture corrected mag (1.0 arcsec aperture diameter)				
z_2AperMag1Err	E	Error in point source Z_2 mag (1.0 arcsec aperture diameter)				
z_2AperMag3	E	Default point source Z_2 aperture corrected mag (2.0 arcsec aperture diameter)				
z_2AperMag3Err	E	Error in default point source Z_2 mag (2.0 arcsec aperture diameter)				
z_2AperMag4	E	Point source Z_2 aperture corrected mag (2.8 arcsec aperture diameter)				
z_2AperMag4Err	E	Error in point source Z_2 mag (2.8 arcsec aperture diameter)				
z_2Gausig	E	RMS of axes of ellipse fit in Z_2				
z_2Ell	E	1-b/a				

z_2PA	E
z_2ErrBits	J
z_2AverageConf	E
z_2Class	1
z_2ClassStat	E
z_2ppErrBits	J
z_2SeqNum	J
z_2Xi	E
z_2Eta	E
y_1Mjd	D
y_1AperMag1	E
y_1AperMag1Err	E
y_1AperMag3	E
y_1AperMag3Err	E
y_1AperMag4	E
y_1AperMag4Err	E
y_1Gausig	E
y_1Ell	E
y_1PA	E
y_1ErrBits	J
y_1AverageConf	E
y_1Class	1
y_1ClassStat	E
y_1ppErrBits	J
y_1SeqNum	J
y_1Xi	E
y_1Eta	E
y_2Mjd	D
y_2AperMag1	E
y_2AperMag1Err	E
y_2AperMag3	E
y_2AperMag3Err	E
y_2AperMag4	E
y_2AperMag4Err	E
y_2Gausig	E
y_2Ell	E
$y _2 P A$	E
y_2ErrBits	J

ellipse fit celestial orientation in Z_2
processing warning/error bitwise flags in Z_2
average confidence in 2 arcsec diameter default aperture (aper3) Z_2
discrete image classification flag in Z_2
S-Extractor classification statistic in Z_2
additional WFAU post-processing error bits in Z_2
the running number of the $Z _2$ detection
Offset of Z_2 detection from master position (+east/-west)
Offset of Z_2 detection from master position (+north/-south)
Modified Julian Day in Y_1 band
Point source Y_1 aperture corrected mag (1.0 arcsec aperture diameter)
Error in point source Y_1 mag (1.0 arcsec aperture diameter)
Default point source Y_1 aperture corrected mag (2.0 arcsec aperture diameter)
Error in default point source $Y _1$ mag (2.0 arcsec aperture diameter)
Point source Y_1 aperture corrected mag (2.8 arcsec aperture diameter)
Error in point source $Y _1$ mag (2.8 arcsec aperture diameter)
RMS of axes of ellipse fit in $Y _1$
1-b/a
ellipse fit celestial orientation in Y _1
processing warning/error bitwise flags in Y_1
average confidence in 2 arcsec diameter default aperture (aper3) Y_1
discrete image classification flag in Y_1
S-Extractor classification statistic in Y_1
additional WFAU post-processing error bits in Y _1
the running number of the $Y _1$ detection
Offset of $Y _1$ detection from master position (+east/-west)
Offset of Y_1 detection from master position (+north/-south)
Modified Julian Day in Y_2 band
Point source Y_2 aperture corrected mag (1.0 arcsec aperture diameter)
Error in point source Y _2 mag (1.0 arcsec aperture diameter)
Default point source Y_2 aperture corrected mag (2.0 arcsec aperture diameter)
Error in default point source $Y _2$ mag (2.0 arcsec aperture diameter)
Point source Y_2 aperture corrected mag (2.8 arcsec aperture diameter)
Error in point source Y_2 mag (2.8 arcsec aperture diameter)
RMS of axes of ellipse fit in $Y _2$
1-b/a
ellipse fit celestial orientation in Y _2
processing warning/error bitwise flags in Y _2

VVV_DR4.2_description

y_2AverageConf	E
y_2Class	1
y_2ClassStat	E
y_2ppErrBits	J
$y _2 S e q N u m$	J
y_2Xi	E
y_2Eta	E
j_1Mjd	D
j_1AperMag1	E
j_1AperMag1Err	E
j_1AperMag3	E
j_1AperMag3Err	E
j_1AperMag4	E
j_1AperMag4Err	E
j_1Gausig	E
j_1Ell	E
j_1PA	E
j_1ErrBits	J
j_1AverageConf	E
j_1Class	I
j_1ClassStat	E
j_1ppErrBits	J
j_1SeqNum	J
j_1Xi	E
j_1Eta	E
j_2Mjd	D
j_2AperMag1	E
j_2AperMag1Err	E
j_2AperMag3	E
j_2AperMag3Err	E
j_2AperMag4	E
j_2AperMag4Err	E
j_2Gausig	E
j_2EII	E
j_2PA	E
j_2ErrBits	J
j_2AverageConf	E
j_2Class	1

average confidence in 2 arcsec diameter default aperture (aper3) Y_2 discrete image classification flag in Y_2
S-Extractor classification statistic in Y_2
additional WFAU post-processing error bits in Y_2
the running number of the $Y _2$ detection
Offset of $Y _2$ detection from master position (+east/-west)
Offset of Y_2 detection from master position (+north/-south)
Modified Julian Day in J_1 band
Point source J_1 aperture corrected mag (1.0 arcsec aperture diameter)
Error in point source J_1 mag (1.0 arcsec aperture diameter)
Default point source J_1 aperture corrected mag (2.0 arcsec aperture diameter)
Error in default point source J_1 mag (2.0 arcsec aperture diameter)
Point source J_1 aperture corrected mag (2.8 arcsec aperture diameter)
Error in point source J_1 mag (2.8 arcsec aperture diameter)
RMS of axes of ellipse fit in J_1
1-b/a
ellipse fit celestial orientation in J_1
processing warning/error bitwise flags in J_1
average confidence in 2 arcsec diameter default aperture (aper3) J_1
discrete image classification flag in J_1
S-Extractor classification statistic in J_1
additional WFAU post-processing error bits in J_1
the running number of the J_1 detection
Offset of J_1 detection from master position (+east/-west)
Offset of J_1 detection from master position (+north/-south) Modified Julian Day in J_2 band
Point source J_2 aperture corrected mag (1.0 arcsec aperture diameter)
Error in point source J_2 mag (1.0 arcsec aperture diameter)
Default point source J_2 aperture corrected mag (2.0 arcsec aperture diameter)
Error in default point source J_2 mag (2.0 arcsec aperture diameter)
Point source J_2 aperture corrected mag (2.8 arcsec aperture diameter)
Error in point source J_2 mag (2.8 arcsec aperture diameter)
RMS of axes of ellipse fit in J_2
1-b/a
ellipse fit celestial orientation in J_2
processing warning/error bitwise flags in J_2
average confidence in 2 arcsec diameter default aperture (aper3) J_2 discrete image classification flag in J_2

j_2ClassStat	E	S-Extractor classification statistic in J_2
j_2ppErrBits	J	additional WFAU post-processing error bits in J_2
j_2SeqNum	J	the running number of the J_2 detection
j_2Xi	E	Offset of J_2 detection from master position (+east/-west)
j_2Eta	E	Offset of J_2 detection from master position (+north/-south)
h_1Mjd	D	Modified Julian Day in H_1 band
h_1AperMag1	E	Point source $H _1$ aperture corrected mag (1.0 arcsec aperture diameter)
h_1AperMag1Err	E	Error in point source $\mathrm{H} _1$ mag (1.0 arcsec aperture diameter) Default point source H $_1$ aperture corrected mag (2.0 arcsec aperture
h_1AperMag3	E	diameter)
h_1AperMag3Err	E	Error in default point source $\mathrm{H} _1 \mathrm{mag}$ (2.0 arcsec aperture diameter) Point source H 1 aperture corrected mag (2.8 arcsec aperture
h_1AperMag4	E	diameter)
h_1AperMag4Err	E	Error in point source H_1 mag (2.8 arcsec aperture diameter)
h_1Gausig	E	RMS of axes of ellipse fit in H_1
h_1Ell	E	1-b/a
h_1PA	E	ellipse fit celestial orientation in H_1
h_1ErrBits	J	processing warning/error bitwise flags in H_1
h_1AverageConf	E	average confidence in 2 arcsec diameter default aperture (aper3) H_1
h_1Class	I	discrete image classification flag in $\mathrm{H} _1$
h_1ClassStat	E	S-Extractor classification statistic in $\mathrm{H} _1$
h_1ppErrBits	J	additional WFAU post-processing error bits in $\mathrm{H} _1$
h_1SeqNum	J	the running number of the $\mathrm{H} _1$ detection
h_1Xi	E	Offset of H_1 detection from master position (+east/-west)
h_1Eta	E	Offset of H_1 detection from master position (+north/-south)
h_2Mjd	D	Modified Julian Day in H_2 band
h_2AperMag1	E	Point source H_2 aperture corrected mag (1.0 arcsec aperture diameter)
h_2AperMag1Err	E	Error in point source H_2 mag (1.0 arcsec aperture diameter)
h_2AperMag3	E	Default point source H_2 aperture corrected mag (2.0 arcsec aperture diameter)
h_2AperMag3Err	E	Error in default point source $\mathrm{H}_{2} 2$ mag (2.0 arcsec aperture diameter)
h_2AperMag4	E	Point source H_2 aperture corrected mag (2.8 arcsec aperture diameter)
h_2AperMag4Err	E	Error in point source H_2 mag (2.8 arcsec aperture diameter)
h_2Gausig	E	RMS of axes of ellipse fit in H _2
h_2EII	E	1-b/a
h_2PA	E	ellipse fit celestial orientation in H _2
h_2ErrBits	J	processing warning/error bitwise flags in $\mathrm{H} _2$
h_2AverageConf	E	average confidence in 2 arcsec diameter default aperture (aper3) H_2
h_2Class	1	discrete image classification flag in H _2
h_2ClassStat	E	S-Extractor classification statistic in $\mathrm{H} _2$
h_2ppErrBits	J	additional WFAU post-processing error bits in $\mathrm{H}_{2} 2$

VVV_DR4.2_description

h_2SeqNum	J	the running number of the H_2 detection h_2Xi
Offset of H_2 detection from master position (+east/-west)		
ks_1Mjd	E	Offset of H_2 detection from master position (+north/-south) Modified Julian Day in Ks_1 band
ks_1AperMag1	E	Point source Ks_1 aperture corrected mag (1.0 arcsec aperture diameter)
ks_1AperMag1Err	E	Error in point source Ks_1 mag (1.0 arcsec aperture diameter) Default point source Ks_1 aperture corrected mag (2.0 arcsec aperture diameter)
ks_1AperMag3	E	Error in default point source Ks_1 mag (2.0 arcsec aperture diameter)
ks_1AperMag3Err	E	Point source Ks_1 aperture corrected mag (2.8 arcsec aperture
ks_1AperMag4	E	diameter)
ks_1AperMag4Err	E	Error in point source Ks_1 mag (2.8 arcsec aperture diameter)
ks_1Gausig	E	RMS of axes of ellipse fit in Ks_1
ks_1EII	E	1-b/a ks_1PA
ellipse fit celestial orientation in Ks_1		

ks_2Eta	E	Offset of Ks_2 detection from master position (+north/-south)
VARFLAG	I	Classification of variability in this band
PRIMARY_SOURCE	B	Primary source 1

Acknowledgments

Please use the following statement in your articles when using these data: Based on data products from VVV Survey observations made with the VISTA telescope at the ESO Paranal Observatory under programme ID 179.B-2002.

Further Details

More detailed information can be found at: - the CASU webpages
http://casu.ast.cam.ac.uk/surveys-projects/vista/

- by contacting the VVV Science Team Members listed at the VVV Survey webpage
http://vvvsurvey.org
- Photometric calibration papers

Gonzalez-Fernandez, C., Hodgkin, S. T., Irwin, M. J., Gonzalez-Solares, E., Koposov, S. E., Lewis, J. R., Emerson, J. P., Hewett, P. C., Yoldas, A. K., and Riello, M., 2018, Monthly Notices of the Royal Astronomical Society, 474, 5459

Hajdu, G., Dekany, I., Catelan, M., Grebel, E. K., 2020, Experimental Astronomy, 49, 217

- the VVV Science Team papers:
D. Minniti, P. W. Lucas, J. P. Emerson, R. K. Saito, M. Hempel, P. Pietrukowicz, A. V. Ahumada, M. V. Alonso, J. Alonso-García, J. I. Arias, R. M. Bandyopadhyay, R. H. Barbá, L. R. Bedin, E. Bica, J. Borissova, L. Bronfman, M. Catelan, J. J. Clariá, N. Cross, R. de Grijs, I. Dékány, J. E. Drew, C. Fariña, C. Feinstein, E. Fernández Lajús, R. C. Gamen, D. Geisler, W. Gieren, B. Goldman, O. González, G. Gunthardt, S. Gurovich, N. C. Hambly, M. J. Irwin, V. D. Ivanov, A. Jordán, E. Kerins, K. Kinemuchi, R. Kurtev, M. López-Corredoira, T. Maccarone, N. Masetti, D. Merlo, M. Messineo, I. F. Mirabel, L. Monaco, L. Morelli, N. Padilla, M. C. Parisi, G. Pignata, M. Rejkuba, A. Roman-Lopes, S. E. Sale, M. R. Schreiber, A. C. Schröder, M. Smith, L. Sodré Jr., M. Soto, M. Tamura, C. Tappert, M. A. Thompson, I. Toledo, M. Zoccali, "VISTA Variables in the Via Lactea (VVV): The public ESO near-IR variability survey of the Milky Way", 2010, New Astronomy, 15, 433 (arXiv:0912.1056)
R. Saito, M. Hempel, J. Alonso-García, I. Toledo, J. Borissova, O. González, J. C. Beamin, D. Minniti, P. Lucas, J. Emerson, A. Ahumada, S. Aigrain, M. V. Alonso, E. de Amôres, R. Angeloni, J. Arias, R. Bandyopadhyay, R. Barbá, B. Barbuy, G. Baume, L. Bedin, E. Bica, L. Bronfman, G. Carraro, M. Catelan, J. J. Clariá, C. Contreras, N. Cross, C. Davis, R. de Grijs, I. Dékány, J. Drew, C. Fariña, C. Feinstein, E. Fernández Lajús, S. Folkes, R. Gamen, D. Geisler, W. Gieren, B. Goldman, A. Gosling, G. Gunthardt, S. Gurovich, N. Hambly, M.

Hanson, M. Hoare, M. Irwin, V. Ivanov, A. Jordán, E. Kerins, K. Kinemuchi, R. Kurtev, A. Longmore, M. López-Corredoira, T. Maccarone, E. Martín, N. Masetti, R. Mennickent, D. Merlo, M. Messineo, F. Mirabel, L. Monaco, C. Moni Bidin, L. Morelli, N. Padilla, T. Palma, M. C. Parisi, Q. Parker, D. Pavani, P. Pietrukowicz, G. Pietrzynski, G. Pignata, M. Rejkuba, A. Rojas, A. Roman-Lopes, M. T. Ruiz, S. Sale, I. Saviane, M. Schreiber, A. Schröder, S. Sharma, M. Smith, L. Sodré Jr., M. Soto, A. Stephens, M. Tamura, C. Tappert, M. Thompson, E. Valenti, L. Vanzi, W. Weidmann, M. Zoccali; "VISTA Variables in the Via Lactea: current status and first results", 2010, The Messenger, 141, 24
M. Catelan, D. Minniti, P. W. Lucas, J. Alonso-García, R. Angeloni, J. C. Beamín, C. Bonatto, J. Borissova, C. Contreras, N. Cross, I. Dekany, J. P. Emerson, S. Eyheramendi, D. Geisler, E. Gonzalez-Solares, K. Helminiak, M. Hempel, M. J. Irwin, V. D. Ivanov, A. Jordan, R. Kerins, R. Kurtev, F. Mauro, C. Moni-Bidin, C. Navarrete, P. Perez, K. Pichara, M. Read, M. Rejkuba, R. K. Saito, S. E. Sale, I. Toledo, "The Vista Variables in the Via Lactea (VVV) ESO Public Survey: Current Status and First Results", 2011, in Carnegie Observatories Astrophysics Series (ed. Andrew McWilliam), Volume 5, p. 145 (arXiv:1105.1119)
R. K. Saito, M. Hempel, D. Minniti, P. W. Lucas, M. Rejkuba, I. Toledo, O. A. Gonzalez, J. Alonso-Garcia, M. J. Irwin, E. Gonzalez-Solares, S. T. Hodgkin, J. R. Lewis, N. Cross, V. D. Ivanov, E. Kerins, J. P. Emerson, M. Soto, E. B. Amores, S. Gurovich, I. Dékány, R. Angeloni, J. C. Beamin, M. Catelan, N. Padilla, M. Zoccali, P. Pietrukowicz, C. Moni-Bidin, F. Mauro, D. Geisler, S. L. Folkes, S. E. Sale, J. Borissova, R. Kurtev, A. V. Ahumada, M. V. Alonso, A. Adamson, J. I. Arias, R. M. Bandyopadhyay, R. H. Barbá, B. Barbuy, G. L. Baume, L. R. Bedin, R. Benjamin, E. Bica, C. Bonatto, L. Bronfman, G. Carraro, A. N. Chene, J. J. Clariá, J. R. A. Clarke, C. Contreras, A. Corvillon, R. de Grijs, B. Dias, J. E. Drew, C. Fariña, C. Feinstein, E. Fernández Lajús, R. C. Gamen, W. Gieren, B. Goldman, C. Gonzalez-Fernandez, R. J. J. Grand, G. Gunthardt, N. C. Hambly, M. M. Hanson, K. Helminiak, M. G. Hoare, L. Huckvale, A. Jordán, K. Kinemuchi, M. López-Corredoira, T. Maccarone, D. Majaess, E. Martin, N. Masetti, R. E. Mennickent, I. F. Mirabel, L. Monaco, L. Morelli, V. Motta, T. Palma, M. C. Parisi, Q. Parker, F. Peñaloza, G. Pietrzynski, G. Pignata, B. Popesku, M. A. Read, A. Roman-Lopes, M. T. Ruiz, I. Saviane, M. R. Schreiber, A. C. Schröder, S. Sharma, M. D. Smith, L. Sodre Jr., J. Stead, A. W. Stephens, M. Tamura, C. Tappert, M. A. Thompson, E. Valenti, L. Vanzi, N. A. Walton, W. Weidmann, and A. Zijlstra, "VVV DR1: The First Data Release of the Milky Way Bulge and Southern Plane from the Near-Infrared ESO Public Survey VISTA Variables in the Via Lactea", 2012, Astronomy \& Astrophysics, 537, A107 (arXiv:1111.5511)
F. Mauro, C. Moni Bidin, A.-N. Chené, D. Geisler, J. Alonso-García, J. Borissova, G. Carraro, "The VVV-SkZ pipeline: an automatic PSF-fitting photometric pipeline for the VVV survey", 2013, Revista Mexicana de Astronomía y Astrofísica Vol. 49, 189
(arXiv:1303.1824)

